Chapter 11

Interpretation of Phase Diagrams
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The subject of phase equilibria and phase diagrams is one of the cornerstones
of solid state chemistry. Phase diagrams are plots of temperature (occasionally
pressure) against composition. They summarize in graphical form the ranges of
temperature and composition over which certain phases or mixtures of phases
exist under conditions of thermodynamic equilibrium. Thus the effect of
temperature on solids and the reactions that may or may not occur between
solids may often be deduced from the appropriate phase diagram. This chapter is
concerned primarily with the interpretation of phase diagrams. Thermodynamic
background is largely excluded and only a brief outline is given of the methods
that are used to determine phase diagrams. Instead, the approach used is to
emphasize the interpretation and practical applications of phase diagrams.

The fundamental rule on which phase diagrams are based is the phase rule,
derived by W.J. Gibbs. The phase rule applies strictly only to conditions of
thermodynamic equilibrium but in practice it also has great value in some non-
equilibrium situations. The phase rule itself will not be derived but is presented
and used as an empirical statement. One big difference from the treatment given
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: here to that found in many physical chemistry textbooks is that here the solid

state is given primary importance whereas in most textbooks attention is focused
on the gaseous and liquid states with rather cursory treatment of the solid state.
Discussion of the vapour state has been largely omitted from this chapter. This
leads to much simplification, and even to a simplified form of the phase rule itself.
However, it does mean that certain topics such as the behaviour of systems
containing variable valence metal atoms and decomposition reactions have been
omitted.

11.1 Definitions
The phase rule is given by the equation
P+F=C+2

where P is the number of phases present in equilibrium, C is the number of
components needed to describe the system and F is the number of degrees of
freedom or independent variables taken from temperature, pressure and

- composition of the phases present. Each of these terms is now explained more

fully.
The number of phases is the number of physically distinct and mechanically
separable (in principle) portions of a system, each phase being itself homo-

- geneous. The distinction between different crystalline phases is usually clear. For

example, the differences between chalk, CaCO,, and sand, SiO,, are obvious.
The distinction between crystalline phases made from the same components but
of different composition is also usually clear. Thus, the magnesium silicate
minerals enstatite, MgSiOj3, and forsterite, Mg, SiO,, are different phases. They
have very different composition, structures and properties. With solids it is also
possible to get different crystalline phases having the same chemical composition.
This is known as polymorphism. For example, two polymorphs of Ca,SiO, can be
prepared at room temperature, the stable y form and the metastable f form, but
these have quite distinct physical and chemical properties and crystal structures

(see Chapter 19).

One complicating factor in classifying solid phases is the occurrence of solid
solutions (Chapter 10). For example, « — Al,O; and Cr, 0, have the same crystal
structure (corundum) and form a continuous range of solid solutions at high
temperature. Any mixture of Al,O; and Cr,O; can react at high temperature
‘to form a single, homogeneous phase whose composition may be altered
“without changing the integrity or homogeneity of the single phase.

In recent years, with advances in our knowledge of defects in crystals,
especially extended defects such as the crystallographic shear structures
(Chapter 9), it has become difficult in certain cases to decide exactly what

‘constitutes a separate phase. This is because a minute change in composition can

lead to a different arrangement of defects in a structure. In the oxygen-deficient

‘tungsten oxides, WO, _,, what was previously thought to be a range of
‘homogeneous solid solutions is now known to be a large number of phases that
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are very close in composition and similar, but distinct, in structure. Some of these
phases have formulae belonging to the homologous series W,05,_,. Thus
W,00s50 and W, Os; are physically distinct phases (Chapter 9). Although these
crystallographic shear structures are an interesting new area of solid state

chemistry, their occurrence is so far restricted mainly to a small number of

transition metal compounds; with by far the majority of solid compounds there is
no problem in deciding exactly what constitutes a phase.

In the liquid state the number of possible, separate homogeneous phases that
can exist is much more limited than in the solid state. This is because single phasc
liquid solutions form much more readily and over wider compositional ranges
than do single phase solid solutions. Take the Na,O-SiO, system for instance. In
the liquid state at high temperatures, Na, O and SiO, are completely miscible to
give a single, liquid, sodium silicate phase. In the crystalline state, however. the
number of phases is quite large. Crystalline sodium silicate phases form at five
different compositions and at least one of these shows polymorphism.

In the gaseous state, the maximum number of possible phases appears always
to be 1; there are no known cases of immiscibility between two gases, if the effects
of gravity are ignored.

The number of components of a system is rather more difficult to visualize. It is
the number of constituents of the system that can undergo independent variation
in the different phases; alternatively, it is the minimum number of constituents
needed in order to describe completely the compositions of the phases present in
the particular system. This is best understood with the aid of examples:

(a) Allof the crystalline calcium silicates can be considered to be built from CaO
and SiO, in varying proportions. CaO-SiQ, is therefore a two-component
system even though there are three elements present, Ca, Si and O.
Compositions between CaO and SiO, can be regarded as forming a binary
(i.e. two-component) join in the ternary system Ca—Si-O (Fig. 11.1).

(b) The system MgO is a unary (one-component) system, at least up to the
melting point 2700 °C, because the composition of MgO is always fixed.

(¢) The composition ‘FeO’ is part of the two-component system, iron—oxygen
because wiistite is actually a non-stoichiometric, iron-deficient phase,
Fe,;_,0, caused by having some Fe®* present (Chapter 9). The bulk
composition ‘FeO’ in fact contains a mixture of two phases at equilibrium:
Fe, .0 and Fe metal.

The number of degrees of freedom of a system is the number of independently
variable factors taken from temperature, pressure and composition of phases, i.c.
it is the number of these variables that must be specified in order that the system
be completely defined. Again, let us see some examples:

(a) A system that consists of boiling water, i.e. water and steam in equilibrium,
does not have a composition variable since both water and steam contain
molecules of the same fixed formula, H,O. To define the system it is necessary
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CS= CaO.Si02= Ca Si03 ATOM %

0352 =3(:aO.2.Si02 =Ca3§|207
CZS = ZCOO'S'OfCOZS'OA
Cas = 3C<10.Si02 = 003$i05

Ca CaO 0

Fig. 11.1 Binary join CaO-SiO, in the ternary

system Ca-Si—O. Note the method used for the

labelling of phases, C=CaO, etc. This type of
abbreviation is widely used in oxide chemistry

to specify only the steam pressure because then the temperature of boiling l§
automatically fixed (or vice versa). Application of the phase rule to this

system gives:

P+F=C+2; C = I(i.e. H,0), P =2 (vapour and liquid) and so F = |
(either temperature or pressure but not both).

At sea level, water boils at 100 °C but at the high altitude of Mexico City
atmospheric pressure is only 580 mm Hg and water in equilibrium with stejam
at this pressure boils at 92 °C. The system water—steam is therefore univanqm
because only one degree of freedom, either P or T, is needcc.i to describe
completely the system at equilibrium. It should be emphasized that the
relative amounts of water and steam are not given by the phase rule. As long
as there is sufficient steam present to maintain the equilibrium pressure, the
volume of vapour is unimportant.

(b) A solid solution in the system Al,0;-Cr,03 has one composition variable
because the Al,O5: Cr,O; ratio can be varied and the same homogencom.ls
phase obtained. Temperature can also be varied within the single phase solid -
solution field. In the temperature versus composition phase diagram of the
Al,0;-Cr, 0, system the solid solutions occupy an area. Two dcgrces_ of
freedom are therefore needed in order to characterize a certain solid solution
composition and temperature (Fig. 10.6).

In refractory systems with very high melting temperatures, sucfh as Al,_O3.—
Cr, 05, the vapour pressure of the solid phases and even that of the liquid phase is
negligible in comparison with atmospheric pressure. The vapour phase is
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effectively non-existent, therefore, and need not be regarded as a possible phase
for work at atmospheric pressure. Such systems are called condensed systems and
the phase rule is modified accordingly to give the condensed phase rule, P + F = ('
+ 1 (instead of + 2). A solid solution in the Al,O;-Cr, 05 system is bivariant in
terms of the condensed phase rule because two variables must be specified in
order to describe the solid solution, i.e. temperature and composition. Therefore,

P+F=C+1; C =2(Al,0; and Cr,0;), P=1 and so F=2.

Itis important to define what is meant by equilibrium. Thermodynamically, the
conditions for equilibrium can be defined precisely—at equilibrium, no useful
energy may pass into or out of the system. Experimentally, it may be difficult to
assess whether or not a system is in a state of equilibrium. There are, however,
several criteria that may help one to decide in a particular situation:

(a) Isthe phase or phase assemblage that is present in the system unchanged with
time, keeping all other variables constant ? If there is a change with time, we
can definitely say that equilibrium has not been reached, but the converse is
not necessarily true. Thus, lime and sand may coexist together indefinitely
without reacting but we know from the CaO-SiO, phase diagram that they
should react to give, at equilibrium, various calcium silicates, depending on
the lime: sand ratio. Probably a more thought-provoking example is the
thermodynamic instability of the human body in the presence of oxygen;
fortunately for us, oxidation of the particular carbon compounds involved is
kinetically very slow at room temperature!

Another example of kinetic stability but thermodynamic instability is the
occurrence of diamond at room temperature and pressure. From the
condensed phase rule, a one-component system, such as carbon, can contain
either two phases in equilibrium at a single fixed temperature (P = 2, and so
F =0), or one phase coexisting over a range of temperatures (P =1, F = |).
At ambient temperature and pressure, the equilibrium behaviour of carbon
belongs to the second category with graphite as the equilibrium phase. Al
high pressures, the situation reverses and diamond is stable relative to
graphite (Fig. 2.19). However, once diamond has been prepared at high
pressures, the pressure can be released without danger of conversion to
graphite occurring at measurable rates (and provided the temperature is
<900°C).

There are countless other examples of phases or materials that coexist
together only because reaction between them is kinetically slow. The phase
rule tells us absolutely nothing about the kinetics of reaction, only the general
direction in which reactions may proceed. Bearing in mind that the phase rule
pertains only to equilibrium, there are no known examples of systems in
which the phase rule is violated.

(b) For systems that react at observable rates, a useful guideline is to observe the
approach to equilibrium from two different directions and see whether the
products obtained are identical. For example, at a certain temperature, is the
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same phase assemblage produced by either raising or lowering the tempera-
ture of the reaction mixture to this value?

An interesting example of this is provided by the crystalline phase
Ca;SiOs, which is unstable below ~ 1250 °C. Ca;SiOs may be prepared b.y
reacting lime and silica at 1300°C but not by reaction at 1100°C. Is this
because the kinetics of reaction are too slow at 1100 °C? This question may
be answered by taking Ca;SiO5 prepared at, for example, 1300°C and
subsequently heating it at 1100 °C. It is then found to decompose .slowly to
give a mixture of CaO and Ca,SiO,. This result proves that Ca,;SiO; has a
lower limit of stability somewhere between 1100 and 1300 °C. Consequently,
CaO and Ca,SiO, can never react to form Ca,SiOs at 1100°C.

(c) A related test is to use different starting materials and see .whethgr the
products of reaction are the same. For example, crystalline sodium 5}11cates,
e.g. Na,Si,Os, may be prepared in several ways. Na,CO; and SiO; ina |:2
molar ratio can be heated at subsolidus temperatures (700 to 750°C) for
several days to give Na,Si,Os. Alternatively, aqueous solutions of a sodium
salt and silica (usually as ethyl orthosilicate) may be mixed and dried to give a
hydrated gelatinous mixture and fired at ~ 700 “C. A third pathway is to melt
the starting materials, cool them rapidly to form a glass and crystallize .the
glass by heating for several hours at ~ 700 °C. Since all these methods yield
Na,Si,0s, it is likely to be a thermodynamically stable phase.

It is important to use different preparative methods where possible, as in
the above example, because the processes of reacting together crystalline
solids or of crystallizing glasses often occur in several stages (but different
stages in the two methods) and the final approach to equilibrium may be
slow.

The equilibrium state is always that which has the lowest free energy. It may t.)e
thought of as lying at the bottom of a free energy well (Fig. 11.2). The problem in
determining whether equilibrium has been reached is that other free energy
minima may exist but not be as deep as the equilibrium well. There may be a
considerable energy barrier involved in moving from a metastable to the stable
state and under many conditions this barrier may be prohibitively high. Such an
example is the metastability of diamond relative to graphite at room tempera-

unstable

metastable

Fig. 11.2 Schematic diagram showing stable, unstable
stable and metastable conditions
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ture. The energy barrier or activation energy for the diamond — graphite reaction
is so high that, once formed, diamond is kinetically stable although thermo-
dynamically metastable.

The thermodynamic meaning of the term unstable is shown in Fig. 11.2. If a
ballis perched on a hill-top, the slightest movement is sufficient to cause it to start
rolling down one side or the other. In the same way, there is no activation energy
involved in changing from a thermodynamically unstable to either a stable or a
metastable state. Examples of unstable equilibrium are difficult to find (because
of their instability!) but one can point to their would-be occurrence. Inside a
region of liquid immiscibility (see later and Chapter 18) exists an area bounded
by a dome called a spinodal. Within the spinodal, a homogeneous liquid would be
unstable and would spontaneously separate into two liquids by the process
known as spinodal decomposition.

11.2 One-component systems

The independent variables in a one-component system are limited to
temperature and pressure because the composition is fixed. From the phase rule,
P+ F=C+2=3. The system is bivariant (F =2) if one phase is present,
univariant (F = 1) if two are present and invariant (F =0) if three are present.
Schematic phase relations are given in Fig. 11.3 for a one-component system in
which the axes are the independent variables, pressure and temperature. Possible
phases are two crystalline modifications or polymorphs (sometimes called
allotropes), X and Y, liquid and vapour. Each of these phases occupies an area or
field on the diagram when F = 2 (both pressure and temperature are needed to
describe a point in one of these fields). Each single phase region is separated from
the neighbouring single phase regions by univariant curves (P =2 and so F = 1).
Thus if one variable, say pressure, is fixed, then the other, temperature, is
automatically fixed. The univariant curves on the diagram represent the
following equilibria:

PRESSURE

gas

A
TEMPERATURE

Fig. 11.3 Schematic pressure versus tem-
perature phase diagram of a one-
component system
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(a) BE—transition curve for polymorphs X and Y; it gives the change of
transition temperature with pressure.

(b) FC—change of melting point of polymorph Y with pressure.

(c) AB, BC—sublimation curves for X and Y, respectively.

(d) CD—vapour pressure curve for the liquid.

From Fig. 11.3, crystals of polymorph X can never melt directly under
equilibrium conditions because the fields of X and liquid never meet on the

diagram. On heating, crystals of X can either sublime at a pressure below p, or

transform to polymorph Y at pressures above p,. They cannot melt directly. Also
present in Fig. 11.3 are two invariant points B and C for which P=3 and F =0.
The three phases that coexist at point B are: polymorph X, polymorph Y and
vapour. Points B and C are also called triple points.

11.2.1 The system H,0

This important system, shown in Fig. 11.4, gives examples of solid—solid and
solid—liquid transitions. Ice 1 is the polymorph that is stable at atmospheric
pressure; several high pressure polymorphs are also known—ice II to ice VI. At
first sight, there is little similarity between the diagram for a schematic one-
component system (Fig. 11.3) and that for water (Fig. 11.4), but this is mainly
because of the location of the univariant curve XY that separates the fields of ice I
and water. It is well known that ice I has the unusual property of being less dense
than liquid water at 0°C. The effect of pressure on the ice I-water transition
temperature can be understood from Le Chatelier’s principle which states:
‘When a constraint is applied to a system in equilibrium the system adjusts itself
so as to nullify the effects of this constraint.” The melting of ice I is accompanied
by a decrease in volume; increased pressure makes melting easier and so melting
temperatures decrease with increased pressure, in the direction YX. The water
system (Fig. 11.4) is also more complex than Fig. 11.3 since additional invariant
points exist which correspond to three solid phases in equilibrium (e.g. point Z).
The rest of the diagram should be self-explanatory; thus the curves Y X A B C,
give the variation of melting point with pressure for some of the different ice
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Fig. 11.4 The system H,O
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polymorphs. Liquid—vapour equilibria are omitted from Fig. 11.4 because, with
the pressure scale used, these equilibria lie very close to the temperature axis and
in the high temperature corner.

11.2.2 The system SiO,

Silica is the main component of many ceramic materials as well as being the
most common oxide, apart from H,0, in the earth’s crust. The polymorphism of
Si0, is complex with major, first-order phase changes such as quartz—tridymite
and minor changes such as oflow)-fi(high) quartz. The polymorphism at
atmospheric pressure can be summarized by the following sequence of reactions
on heating:

s13C 80°C 1470 C 1710°C
#-Quartz — fi-quartz — f-tridymite —— f-cristobalite — liquid

With increasing pressure, two main changes are observed (Fig. 11.5); first, the
contraction of the field of tridymite and its eventual disappearance, at ~900atm;
second, the disappearance of the field of cristobalite at ~ 1600atm. Above
1600 atm, quartz is the only stable crystalline polymorph and exists up to much
higher pressures. The disappearance of tridymite and cristobalite with increasing
pressure can be correlated with the lesser density of these phases relative to that of
quartz(Table 11.1); the effect of pressure generally is to produce polymorphs that
have a higher density and therefore smaller volume. Above 20000 to 40000 atm
(depending on temperature), quartz transforms to another polymorph, coesite,

1500} P-quartz

A — ~
1000 quartz 22
Bars § -
500} | o
. L
ite | o4

1

500°C 1000 1500
Fig. 11.5 The system SiO,

Table 11.1 Densities of SiO, polymorphs

Polymorph Density (gem™3)
Tridymite 2.298
Cristobalite 2334
Quartz 2.647
Coesite 290
Stishovite 428
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and above 90000 to 120000 atm yet another polymorph, stishovite, is the stable
polymorph of SiO,.

It should be noted that there are many metastable polymorphs of SiO, which
are absent from Fig. 11.5; e.g. it is very easy to undercool cristobalite and to
observe a reversible o(low)—pf(high) transformation at ~ 270°C. However, at
these temperatures, cristobalite is metastable relative to quartz and so this
transformation is omitted from Fig. 11.5.

11.2.3 Condensed one-component systems

For most systems and applications of interest in solid state chemistry, the
condensed phase rule is applicable, pressure is not a variable and the vapour
phase is not important. The phase diagram for a condensed, one-component
system then reduces to a line since temperature is the only degree of freedom. It is
not normal practice to represent such a line phase diagram in graphical form,
unless it forms part of, say, a binary system. For instance, the condensed phase
diagram at 1 atmosphere pressure for SiO, would simply be a line showing the
polymorphic changes that occur with changing temperature. In such cases it is
easier to represent the changes as a ‘flow diagram’, as indicated above for SiO,.

11.3 Two-component condensed systems

Two-component or binary systems have three independent variables: pre-
ssure, temperature and composition. In most systems of interest in the general
sphere of solid state chemistry, the vapour pressure remains low for large
variations in temperature and so, for work at atmospheric pressure, the vapour
phase and the pressure variable need not be considered. In almost all of what
follows, the condensed phase rule P + F = C + 1 is used. In binary systems under
these conditions an invariant point occurs when three phases coexist in
equilibrium: a univariant curve for two phases and a bivariant condition for one
phase. Conventionally, temperature is the vertical scale and composition the
horizontal one in binary phase diagrams.

11.3.1 A simple eutectic system

The simplest possible type of two-component condensed system is the simple
eutectic system shown in Fig. 11.6. In the solid state there are no intermediate
compounds or solid solutions but only a mixture of the end-member crystalline
phases, A and B. In the liquid state, at high temperatures, a complete range of
single phase, liquid solutions occurs. At intermediate temperatures, regions of
partial melting appear on the diagram. These regions contain a mixture of a
crystalline phase and a liquid of different composition to the crystalline phase.

The phase diagram shows several regions or areas which contain either one or
two phases. These arcas are separated from each other by solid curves or lines.
The area ‘liquid’ at high temperatures is single phase and bivariant. Every point
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Fig. 11.6 Simple eutectic binary system

within this area represents a different state for the liquid, ie. a different
temperature and composition. In this region, P =1 and F = 2. The other three
areas shown in Fig. 11.6 contain two phases—A + B, A + liquid, B + liquid —
and are univariant, since P =2 and F =1 in these areas. Consider the region
B + liquid and let the mixture have overall composition f. Let temperature be the
degree of freedom and fix this at T,. The compositions of the two coexisting
phases, B and liquid, are then automatically fixed, although one would have to
determine experimentally what their compositions were.

. In order to determine the compositions of these two phases from the phase
diagram, construction lines (dashed) are drawn. First, an isotherm is drawn at the
temperature of interest, T,. This is the horizontal dashed line that terminates on
the liquidus curve at point h'. This point, h', represents the liquid that is present in
tl?e mixture of B + liquid at temperature T,. The composition of this liquid is
given by drawing a vertical line or isopleth which intersects the composition
(horizontal) axis at h, at which point the composition of the liquid may be simply
read off the composition scale. The other phase that is present in the mixture is B,
whose composition is fixed, as pure B, in this example.

An important distinction to be made here is between different meanings of the
word ‘composition’. It has at least three meanings:

(a) Thecomposition of a particular phase. In the above example, the liquid phasc
has composition h.

(b) Therelativeamounts of thedifferent phases present in a mixture. This may be
referred to as the phase composition. In the above example, B and liquid are
present in the ratio ~ 3:2(see later for an explanation of the lever rule used to
determine phase compositions).

(c) The overall composition of a mixture, in terms of the components and
irrespective of the phases present. This may be termed the component
composition. In the above example, the component composition of mixture
is ~229% A, 78% B.

Since there is no universally adopted convention over the use of the word
‘composition’, one can only say, be careful!

385

In the sense to which the phase rule is applied, composition may be regarded as
a degree of freedom only when it refers to the actual compositions of the phases
involved, category (a). The relative amounts of the different phases in a mixture,
category (b), does not constitute a degree of freedom. Thus, along the isotherm,
h'f'T,, the relative amount of the phases B and liquid varies but the compositions
of the two individual phases do not vary. The component composition, category
(¢), is included in the phase rule, not as a degree of freedom but as the number of
components.

The liquidus curve, xyz, gives the highest temperature at which crystals can
exist as a function of overall composition. Liquids whose compositions lie
between A and e cross the liquidus curve between points x and y on cooling and
enter the two-phase region: A + liquid. For these compositions A is the primary
phase because it is the first phase to crystallize on cooling. The line cyd is the
solidus and gives the lowest temperature at which liquids can exist in equilibrium
over this composition range.

Point yis an invariant point at which three phases coexist: A, B and liquid. Itis
a eutectic and its temperature is the lowest temperature at which a composition
(in this case ¢) can be completely liquid. Alternatively, it is the lowest temperature
at which liquid may be present for any composition in this system. In simple
eutectic systems such as this one, the solidus and eutectic temperatures are the

same.
The melting or crystallization behaviour of different mixtures of A and B on

_ heating or cooling can be understood by reference to Fig. 11.6. Consider

composition f. It contains a mixture of A and B below temperature T, and is
completely liquid above T}. Between T, and T, varying amounts of crystalline B
and liquid coexist. Thus at T, the liquid composition is at h". The relative
amounts of liquid h’ and crystals B, in equilibrium, are given by the lever rule.
These relative amounts are inversely proportional to their distances on the
composition axis from the bulk composition f. The fraction of liquid present at
T, is given by the ratio fB/Bh and the fraction of B by f h/Bh. The lever rule s the
same as the principle of moments but instead of having weights balanced on a
beam at different distances from the fulcrum we have different amounts of two
phases giving an overall bulk or component composition. The lever rule may be
derived by application of the principle of moments, as follows: For composition
f at temperature T, the phases present in equilibrium are B and liquid, h’. The
relative amounts of B and liquid are given by:

(Fractional amount of liquid, ") x (distance hf)=(fractional amount of B) X
(distance B f)

ie.
Fractional amount of liquid, k" fractional amount of liquid, A’
Fractional amount of B~ | —fractional amount of liquid, h’
L
T
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i.e.
Bf
Bf+fh

_Bf
" Bh

The lever rule may be used to determine how the relative amounts of phases in
a mixture change, if at all, with temperature. Thus at temperature T, the amount
of liquid present in composition f is given by Bf/Bh, i.e. ~0.38. At a higher
temperature Tj, the amount of liquid is given by Bf/Bj, i.e. ~0.5. At a lower
temperature, just above the solidus T, the amount of liquid is given by Bf/Be, i.c.
~0.33. Clearly, therefore, the effect of raising the temperature above T is to
cause an increase in the degree of melting from ~ 0.33 at T, to ~ 0.5 at T;. The
limit is reached at T, where the fraction of liquid is 1 and melting is complete. As
the degree of melting increases with increasing temperature, so the composition
of the liquid phase must change accordingly: since crystals of Bdisappear into the
liquid phase on melting, the liquid must become richer in B. Thus the first liquid
that appears on heating, at temperature T, has composition e, i.e. ~33% B, 67%,
A. As melting continues, the liquid follows the liquidus curve ph’j’g until, when
melting is complete at T, the liquid has composition f,i.e. ~ 78% B, 22% A. On
cooling the liquid of composition f, the reverse process should be observed under
equilibrium conditions. At T,, crystals of B begin to form and with falling
temperature the liquid composition moves from g to y as more crystals of B
precipitate.

The eutectic reaction which occurs on cooling through temperature T, gives a
good example of the use of the lever rule. Just above T\, the fraction of B present
is given by fe/Be and is roughly 0.67. Just below T, the fraction of BisfA/BA and
is roughly 0.78. Thus, the residual liquid, of composition e, has crystallized to a
mixture of A and B, i.e. the quantity of B present has increased even further and
crystals of A are formed for the first time.

A solid mixture of A and B of overall composition e undergoes complete
melting at temperature 7', and conversely, on cooling, a homogeneous liquid of
this composition completely crystallizes to a mixture of A and B at 7.

The reactions described above are those that should occur under equilibrium
conditions. This usually means that slow rates of heating and, especially, cooling
are necessary. Rapid cooling rates often lead to different results, especially in
systems which have more complicated phase diagrams. However, the equilib-
rium diagram can often be very useful in rationalizing these non-equilibrium
results (see later).

The liquidus curve xyz may be regarded in various ways. As well as giving the
maximum temperature at which crystals can exist, it is also a saturation solubility
curve. Thus, curve yz could be regarded as giving the solubility limit with
temperature for crystals of B dissolved in liquid. Above yz a homogencous
solution occurs but below this curve undissolved crystals of B are present. On
cooling, precipitation of crystals B would therefore occur below the temperatures

Fractional amount of liquid, h' =
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of curve yz; otherwise a metastable undercooled, supersaturated solution would
resent.
be:nother interpretation of the liquidus is that it shows tl}e effect o'f soluble
impurities on the melting points of pure compognds. Il a specimen of B is ht?ld at
temperature T, and a small amount of A is adFled, then some liquid of
composition g will form. As the amount of added A increases, SO Fhe amount of
liquid g increases until, when sufficient flux, A, has been added to l:frmg the O.VCT'flll
composition to g, the solid phase disappears and the sample will bg all ll_qu1d.
Therefore a small amount of soluble impurity A has lowered thf: g]eltmg point of
B from T to T,. A familiar practical example of this is the addition of salt to icy
roads. In the binary system H,O-NaCl, addition of NaCl lowers the me}tmg
point of ice below 0°C; the system contains a low temperature eutectic at

~ —21°C.

11.3.2 Binary systems with compounds

Three types of binary system with a compound AB are shown in Fig. ‘l 1.7.A
stoichiometric binary compound such as AB is represented on the phase diagram
by a vertical line. This shows the range of temperatures over_whlch com;?ound
AB is stable. Compound AB melts congruently in (a) because it changes directly
from solid AB to liquid of the same composition. Figure 11.7(a) may be
conveniently divided into two parts, given by the compositior_x ranges A—AB and
AB-B: each part may be treated as a simple eutectic system in exactly the same
manner as Fig. 11.6. Although the horizontal lines at Ty and T3, c‘:orrespondl.ng
to the two eutectic temperatures, meet the vertical line rcpresentmg crystal_lm.e
AB, no changes would be observed at T; and T, on heating pure AB. 'I.:hls is
because these horizontal lines should peter out as composition AB is ap-
proached; composition AB, by itself, is a onc—component. system (but not in
Fig. 11.7b and c) and only when another component, A or B,isadded are changes
observed at T, or T,. . .

In Fig. 11.7(b), compound AB melts incongruentl y at T, to give a mixture of
crystals A and liquid of composition x. The relative amounts of liquid and
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Fig. 11.7 Three types of diagram with a binary cogngound. AB 1
coggruently in (a), incongruently in (b) and has an upper limit of stability in (c).

L =liquid




388

crystals A just above T are given by the lever rule; fraction liquid = yz/xz. On
further heating, crystals of A gradually dissolve as the liquid becomes richer in A
and moves along the liquidus curve in the direction xI. At Tj, the liquid
composition has reached /and the last A crystals should disappear. Point x is an
invariant point at which three phases coexist: A, AB and liquid. It is a peritectic
point because the composition of the liquid cannot be represented by positive
quantities of the two coexisting solid phases, i.e. composition x does not lie
between A and AB, as is the case for a eutectic point (Fig. 11.7a). A characteristic
feature of a peritectic is that it is not a minimum point on the liquidus, as is a
eutectic. Phase AB has a primary phase field. It is the first phase to crystallize on
cooling liquids in the composition range x—m. However, the composition of AB is
separated fromits primary phase field. This is different to the case for congruently
melting AB in Fig. 11.7(a), where the composition AB lies within the range xyz
over which AB is the primary phase.

The behaviour of liquid of composition n on cooling is worth describing. At
point p, crystals of A start to precipitate; more A crystals form as the temperature
drops and the liquid composition moves from p to x. At T, the peritectic reaction
liquid (x) + A —liquid (x) + AB occurs. Thus, the crystalline phase changes from
A to AB and the amount of liquid present must diminish. From the lever rule, just
above T, the mixtureis ~ 90 per cent liquid and just below T, only ~ 50 per cent
liquid. Therefore, all of phase A has reacted with some of the liquid to give AB. On
further cooling from T, to T,, more AB crystallizes as the liquid composition
moves from x to m; finally, at T, the residual liquid of composition m crystallizes
toa mixture of ABand B. Just above T}, the mixtureis ~ 30% liquid and 70% AB
and just below Ty, ~10% B and 909, AB.

The behaviour on cooling of any liquid of composition between A and AB is
similar but with one important difference. At T,, the peritectic reaction for these
compositions involves some of A reacting with all the liquid to give AB. Below T,
a mixture of A and AB coexists and no further changes occur on cooling.

In systems that contain incongruently melting compounds, such as
Fig. I.7(b), it is very easy to get non-equilibrium products on cooling. This is
because the peritectic reaction that should occur between A and liquid is slow,
especially if the crystals of A are much more dense than the liquid and have settled
to the bottom of the sample. What commonly happens in practice is that the
crystals of A which have formed are effectively lost to the system and there is not
time for much peritectic reaction to occur at T,. The liquid of composition x then
effectively begins crystallizing again below T,, but this time crystals of AB form:
at the eutectic temperature T, the residual liquid m crystallizes to a mixture of
AB and B, as usual. Thus, it is quite common to obtain a mixture of three
crystalline phases on cooling: A, AB and B, at least one of which should be absent
under equilibrium conditions.

Another common type of non-equilibrium assemblage occurs when the
intermediate, incongruently melting compound AB fails completely to crystallize
on cooling. If this happened on cooling liquids in Fig. 11.7(b), the crystalline
products would be A and B with no AB. Hence the peritectic reaction A + liquid
— AB has been suppressed entirely.
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In some systems, the liquids may fail to crystallize at all on cooling rapidly. The
resulting products are glasses. These are effectively su.pen':ool_e(.i liquids whose
viscosity has increased to the extent that the lpatt_anal is rigid and has the
mechanical properties of a solid rather than a liquid (Chapter 18)'.

The first two examples above show how phase diagrams can be applied to non-
equilibrium situations. If the equilibrium phase diagram is known the occurrence
of non-equilibrium effects may be understood and, in many cases, prfadncted.
Glass formation cannot be predicted from the phase diagram alth'ogg.h, in some
cases, it is found that glass-forming compositions are in the vicinity of low
melting eutectics. _ s

Sometimes, compounds decompose before their melting point is reached, as
shown for ABin Fig. 11.7(c). Compound AB has an upper !f'mit of stability apd at
temperature T, disproportionates intoa mix.lure of crystalline A and B; at higher
temperatures the system is simple eutectic in ch.aracter. \ ;

There are also many examples of systems which contain compounds with a
lower limit of stability, i.c. below a certain temperature, compound. AB
decomposes into a mixture of A and B. The bcha'wour of AB at higher
temperatures can then be any of the three types described abovg.

A phase diagram which contains most of the binary features dlscussgd above
and which is one of the most important diagrams in silicate technology is that of
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the system CaO-SiO,, shown in Fig. 11.8. Two congruently melting compounds
are present, C,S(Ca,Si0,), CS(CaSiO;), and (wo compounds that melt
incongruently, C;S(Ca;SiO;s) and C;3S, (Ca;Si,05). In addition, C;3S has a
lower limit of stability and decomposes to CaO and C,S below 1250 °C. At the
silica-rich end of the phase diagram, a range of liquid immiscibility exists between
1698 and ~ 2100 °C. Liquid immiscibility is discussed in more detail next.

11.3.3 Binary systems with immiscible liquids

In some systems, two liquid phases can coexist over a range of compositions
and temperatures. This usually gives rise to an immiscibility dome, as shown by
the area abc in Fig. 11.9. The dome has effectively made space for itself on the
phase diagram by interrupting the liquidus curve of primary phase A. To see this,
imagine the effect of shrinking the immiscibility dome; points a and ¢ move closer
together until, when they meet, the immiscibility dome has disappeared
completely and the diagram has the appearance of a simple eutectic system
(Fig. 11.6).

Point a is an invariant point because three phases are in equilibrium at this
point: liquid a, liquid ¢ and crystals A(P =3, C =2, and so F =0). It is called a
monotectic.

With increasing temperature, for compositions between a and c, the two
liquids become progressively more soluble in each other until, above temperature
T4, complete liquid miscibility occurs for all compositions. Point b is known as
the upper consolute temperature of the immiscibility dome.

Liquid immiscibility is a feature of many silicate and borate systems. In binary
silicate systems, such as CaO-SiO, (Fig. 11.8), the two-liquid region exists only
above ~ 1700 °C, but sometimes the addition of other oxides causes a stable two-
liquid region to exist at much lower temperatures. In the quaternary system
K;0-Al,0;-Ca0-Si0,, certain compositions enter a region of liquid immisci-
bility at temperatures as low as 1100°C.

Silicate liquid immiscibility has important implications in glass technology,
ceramics and geology. For many years, petrologists have toyed with the idea that
some magmas, naturally occurring silicate melts, may have split up because at
one time their temperature and composition lay within an immiseibility dome.
This could explain the occurrence in nature of pairs of igneous rock types, one

A B  Fig. 11.9 Binary system with liquid immiscibility dome
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rich in silica and the other much poorer in silica, with essentially no rocks_of
intermediate composition present. Irrefutable evidence that liquid immiscibility
was the cause of such occurrences has not been found in earth rocks, but was
found in lunar samples obtained in the Apollo II mission to the moon. It thel.'efore
seems quite likely that liquid immiscibility also played a role in the early history
of the earth.

Liquid immiscibility is common in systems of importance as glasses and gl.ass-
ceramics. This is because both glass-forming compositions and the compositions
over which immiscibility domes exist are usually located at the SiO; — rich end of
phase diagrams. During the cooling of a liquid to form a glass(Chapter 18), many
compositions enter a dome of liquid immiscibility and a process of liquid
unmixing or phase separation occurs. Often, the immiscibility dorpe is not present
on the equilibrium phase diagram, however, and is an entirely mctas.table
immiscibility dome (Fig. 11.10b). In other cases, the top of the dome is an
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Tquili(brium feature and is present on the phase diagram, as in Figs. 11.9 and
1.10(a).

Theregion of two liquids in Fig. 11.10(a) is terminated at its lower temperature
end by the precipitation of crystals of B. What would happen if precipitation of B
were a kinetically slow process? The two-liquid dome would then extend,
metastably, to lower temperatures and in so doing it would probably expand to
include a greater range of compositions. This extension is shown by the dashed
lines. We therefore have two phase diagrams which are appropriate to different
sets of experimental conditions. The equilibrium phase diagram (solid lines) is
observed at slow rates of cooling. At faster cooling rates, the only feature to affect
a liquid is the dome of liquid immiscibility, part of which is stable and part
metastable. This is redrawn in Fig. 11.10(c). Composition x is a single phase
liquid above the temperature T, but below T, a mixture of two liquids occurs. At
T,, these liquids have compositions /, and /,.

Although liquids may avoid crystallizing during cooling and give glasses
instead, they spontaneously separate into two liquids once they get an
appreciable distance inside an immiscibility dome. This unmixing cannot be
suppressed, even with rapid cooling. The unmixing is called spinodal decom-
position and is discussed in Chapter 18.

In other silicate systems, such as the alkali silicates, an immiscibility dome
occurs that is entirely metastable and does not extend above the liquidus
(Fig. 11.10b). A pointer to the occurrence of such a dome is usually given by an
irregular or S-shaped liquidus curve, which indicates that in the stable melt at
high temperature there is probably clustering or premonitory unmixing pheno-
mena. In some systems such as BaO-SiO,, the deviation from ideality is so great
that the liquidus is almost horizontal over a considerable range of compositions.
Unmi{(ing or phase separation is common in glass-forming compositions and
sometimes this is put to commercial use, as in the preparation of Vycor glass. It is
also believed to be important in the nucleation of glass-ceramics (Chapter 18).

11.3.4 Binary systems with solid solutions

.Tl?e.s';implest form of solid solution system is one that shows complete
miscibility in both solid and liquid states (Fig. 11.11). The melting point of A is
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depressed by the addition of B and that of Bis increased by the addition of A. The
liquidus and solidus are both smooth curves which meet only at the end-member
compositions A and B. At low temperatures, a single phase solid solution exists
and is bivariant (C =2, P = 1,and so F = 2). At high temperatures, a single phase
liquid solution exists and is similarly bivariant. At intermediate temperatures, a
two-phase region of solid solution + liquid exists. Within this two-phase region,
the compositions of the two phases in equilibrium are found by drawing
isotherms or tie-lines at the temperature of interest, e.g. T, . The intersection of the
tie-line and the solidus gives the composition of the solid solution, a, and the
intersection of the tie-line and the liquidus gives the liquid composition, b.

On cooling liquids in a system such as this, the crystallization pathways are
complicated. A liquid of bulk composition b begins to crystallize a solid solution
of composition a at temperature T,. At a lower temperature, T,, and at
equilibrium, the amount of solid solution present increases but also its com-
position changes to a’. The fraction of solid solution a’ is given by the lever rule
and is equal to bb'/a’b’, i.e. the equilibrium mixture is approximately one-third
solid solution and two-thirds liquid at T,. Crystallization is therefore a complex
process because with decreasing temperature, the composition of the solid
solution has to change continuously in order to maintain equilibrium. With
falling temperature, both crystals and liquid become progressively richer in B but
the quantities of the two phases change in accord with the lever rule; the overall
composition must obviously always be b. Finally, at temperature Tj, the solid
solution composition reaches the bulk composition b and the last remaining
liquid, of composition b”, disappears.

In systems with phase diagrams such as this, metastable or non-equilibrium
products are often produced by a process of fractional crystallization. This occurs
unless cooling takes place very slowly such that equilibrium is reached at each
temperature. The crystals that form first on cooling liquid b have composition a.
If these crystals do not have time to re-equilibrate with the liquid on further
cooling they are effectively lost from the system. Each new crystal that
precipitates will be a little bit richer in B and the result is that crystals form which
have composition ranging from a to somewhere between b and B.In practice, the
crystals that precipitate during cooling are often ‘cored’. The central part that
formed first may have composition a and on moving out radially from the centre
the crystal becomes increasingly rich in B.

Coring occurs often in many rocks and metals. The plagioclase feldspars,
which are solid solutions of anorthite, CaAl, Si,Og, and albite, NaAlSi; Og, have
the simple phase diagram shown in Fig. 11.12. Igneous rocks contain plagioclase
feldspars and form by slow cooling of liquids. Such feldspar liquids and crystals
are notoriously slow to equilibrate and although the cooling of melts in nature
may have been very slow, it is common nevertheless to find rocks in which
fractional crystallization has occurred. In these, the plagioclase crystals have
calcium-rich centres and sodium-rich outer regions.

Coring may occur in metals during the manufacture of bars and ingots. The
molten metal is poured into moulds (or ‘sand cast’ in moulds of sand) and allowed
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to cool. If the metal composition is part of a solid solution then coring may occur.
Coring is usually deleterious to the properties of the metal and has to be
climinated. This can be done by subsequently heating the bars to just below the
solidus temperature at which homogenization of the metal, with the elimination
of coring, occurs rapidly.

It has been noted that the equilibrium subsolidus assemblage is obtained if
cooling rates are sufficiently slow, but that with somewhat faster cooling
fractional crystallization may occur. This is a property of the phase diagram and
can occur with any kind of material, whether it be rocks, metals, or synthetic
inorganic or organic materials. At still faster cooling rates, other types of
pathway may be followed. With both equilibrium and fractional crystallization,
no undercooling or supersaturation of the liquid occurs and crystallization
begins as soon as the temperature reaches that of the liquidus. With faster cooling
rates, however, undercooling of the liquid is usually possible and this may lead to
various products. It may be possible to go directly from a homogeneous liquid to
homogeneous single phase crystals of the same composition in one step; e.g. if a
liquid of composition 50 per cent albite, 50 per cent anorthite (Fig. 11.12) is
cooled quickly to just below the solidus, 1200 to 1250°C, and held at this
temperature, homogeneous plagioclase of the same composition may crystallize
directly. Alternatively, if the liquid is cooled rapidly to room temperature, there
may not be time for any crystallization to occur and a glass forms. Glass
formation is common in inorganic materials such as silicates. Recently there has
been much scientific and technological interest in glassy semiconductors and
metals. These are materials that have unusual electrical and mechanical
properties (see Chapters 14 and 18).

The simplest type of solid solution phase diagram is that shown in Fig. 11.11.
Other relatively simple types of phase diagram are possible that show complete
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solubility in both the solid and liquid states but have either a thermal minimum
or a thermal maximum in the liquidus and solidus curves (Fig. 11.13). These
thermal maxima and minima are called indifferent points because they are not
true invariant points. For an invariant point, three phases are needed in
equilibrium (F =0, P=C + 1 =3), but this condition can never exist in solid
solution systems such as these because there are never more than two phases
present, i.e. solid solution and liquid solution. The liquidus and solidus are
therefore continuous through the thermal maximum or minimum and do not
show a discontinuity such as is observed for peritectics and eutectics.

The melting points of congruently melting compounds in binary systems can
similarly be regarded as indifferent points because only two phases are present in
equilibrium. However, an alternative in these cases is to regard each congruently
melting compound as a separate one-component system, in which case the
melting point does become an invariant point(P = 2,and so F = 0). With thermal
maxima and minima in solid solution series it is not usual to regard the
composition of the solid solution which has the maximum or minimum as a
special composition and which can be treated as a one-component system in its
own right. This would be done only if this composition had a simple ratio of the
components, e.g. 1:1, 1:2, etc., or there was other evidence that this composition
was special, e.g. if ordering of the solid solutions occurred, giving evidence of a
superstructure in the X-ray diffraction patterns.

Complete solid solubility, such as shown in Figs 11.11 to 11.13, occurs only
when the cations or anions that are replacing each other are similar in size, e.g.
AP and Cr3*. It is far more common to have phase diagrams in which the
crystalline phases have only partial solubility in each other. The simplest possible

_ case, shown in Fig. 11.14, is a straightforward extension of the simple eutectic

system, shown in inset (a). Crystals of B dissolve in crystals of A to form a solid
solution whose maximum extent depends on temperature and is given by the
curves xmp. Just below the melting point of A, point p, A cannot form a solid
solution (s.s.) with B but melts instead (and enters the region As.s. + liquid). With
falling temperature the range of A solid solution gradually grows; the extent of
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Fig. 11.14 Simple binary eutectic system with
partial solid solution formation

the solid solution is a maximum at the solidus temperature, point m. This is
usually the case in systems containing a solid solution. At lower temperatures the
range of solid solutions diminishes along the curve mx. Crystalline B is also able
to dissolve A and its maximum limit of solid solution is given by the curve yng.
The range of B solid solutions is less extensive then that of A solid solutions and,
again, the maximum extent occurs at the solidus, point n.

In the two-phase region (A s.s. + B s.s.), the composition of the A s.s. is given by
the intersection of the tie-line at the temperature of interest, say T, and the curve
m-x which limits the extent of A s.s. The composition of B s.s. is similarly fixed by
the intersection of the tie-line and curve n—y.

In many phase diagrams, the solid phases are shown as line phases, i.c. as heing
stoichiometric and without a range of homogeneity or solid solution formation
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(inset a). In practice, however, the phases may have a slightly variable
composition, as in inset (b), but it may be difficult to detect or measure this.

Examples of real systems that are similar to Fig. 11.14 are forsterite
(Mg,Si0,)-willemite (Zn,Si0,), shown in Fig. 10.1, and spinel (MgAl,O,)-
corundum (Al,0,), shown in Fig. 10.3.

Another type of simple binary system with partial solid solubility is shown in
Fig. 11.15. This rather strange looking diagram can be derived from a simple
system showing complete solubility (inset a). First, suppose that an immiscibility
dome exists within the solid solutions which has an upper consolute temperature
as shown in inset (b). Above the upper consolute temperature, a single phase solid
solution exists, but below it a mixture of two phases exists.

Second, let the dome expand to higher temperatures until it intersects the
melting curves. The result is shown in inset (c) and on an expanded scale as
Fig. 11.15. The phase diagram for silica (SiO,)—eucryptite (LiAISiOy), shown in
Fig. 10.4, for compositions near the eucryptite end is similar to that in Fig. 11.15.

" The Al,0;-Cr,0, diagram (Fig. 10.6) is similar to that shown in inset (b).

A more complex phase diagram containing an incongruently melting phase
that forms a range of limited solid solutions is shown in Fig. 11.16. The
progressive introduction of solid solutions is shown in insets (a), (b), (c) and (d),
again working on the principle that the maximum extent of solid solution occurs
at the solidus (temperatures Ty and T3).

11.3.5 Binary systems with solid—solid phase transitions

The representation of solid—solid phase transitions on phase diagrams
depends on the nature of the phase transition. Transitions that thermodynami-
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cally are first order (Chapter 12) and involve a change in some property such as
volume or enthalpy, or which, crystallographically, are reconstructive and
involve the breaking and forming of many primary bonds, can be treated in much
the same way as melting phenomena. In a one-component condensed system, e.g.
pure A or pure B, two solid polymorphs may coexist in equilibrium at only one
fixed point. In binary systems that do not contain solid solutions, phase
transitions in either of the end-member phases are represented by horizontal (i.c.
isothermal) lines, there being one line for each phase transition. In Fig. 11.17, the
low te.mperaturc polymorphs of A and B are labelled @A and B, respectively.
Transition temperatures are eB= B at T),aA=fA at T, and fJA=0A at T,.In
the absence of solid solutions, these transition temperatures are the same for the
pure phase as for the phase mixed with other phase(s). Several examples of solid-
solid phase transitions occur in the CaO-SiO, phase diagram (Fig. 11.8); e.g.
CaSiO;(CS) undergoes a transformation between the low temperature f
polymorph and the high temperature o polymorph at 1175 °C. This transfor-
mation is observed in CaSiO; alone or when mixed with either SiO, or
Ca;8i,04(C;S,).

In systems that exhibil complete solid solubility, as well as phase transitions,
three types of phase diagram are possible (Fig. 11.18). For the end-member
phases, A and B, the transitions occur at a fixed temperature, as indeed they must
according to the phase rule (C=1, P=2, and so F=0). However, for the
intermediate compositions, two phases can coexist over a range of temperatures
or bulk compositions because there is now one degree of freedom (C =2, P =2
and so F = 1). Thus, two-phase regions containing two solid phases, e.g. (ot + ﬂ),
are generally observed. The treatment of the a=p change in Fig. 11.18(a) i;
exactly the same as for the melting of 8 solid solutions, as discussed in detail for
Fig. 11.11. The melting relations in Fig. 11.18(a) are the same as in Fig. 11.11 but
in‘ fact could be any of the three types given in Figs 11.11 and 11.13. In
Fig. 11.18(a), both end-members A and B and the entire range of solid solutions
show both o and # polymorphs.
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In Fig. 11.18(b), the a=p phase transition curves intersect the solidus curve
because the a=f transition in B and in solid solutions rich in B now occurs,
hypothetically, above the melting point of B and the B-rich solid solutions. The
nature of the intersection of the three one-phase fields (2, f and liquid) and the
three two-phase regions at T, is typical of solid solution systems. Always, two
one-phase areas such as « and § must be separated from each other by a two-
phase area (« + ), although in practice the width of the two-phase regions may

. be difficult to detect experimentally. Three phases can coexist at only one

temperature, T, and on the horizontal line xyz. There is an apparent
contradiction with the phase rule here because, although three coexisting phases
constitute an invariant condition, they coexist over the range of compositions
xyz. However, there is no contradiction because the compositions of the
individual phases are fixed (as x, y and z for f, x and liquid, respectively). The only
variable is the relative amounts of these three phases; these relative amounts are
not a degree of freedom in the phase rule.

A similar situation exists in simple eutectic systems (Fig. 11.6). The eutectic is
point y but the invariant condition extends along the line cyd.

In Fig. 11.18(c), the temperature of the = f transition decreases increasingly
rapidly as the solid solutions become more rich in B. For pure B, the a polymorph
does not exist at any real temperature. The melting behaviour in (c) is not shown.
It could be any of the types shown in Figs 11.11 and 11.13.

A typical binary system that has both phase transitions and partial solid
solubility is shown in Fig. 11.19. The a=§ transition occurs at one fixed
temperature in pure A and pure B but, in the solid solutions, two-phase regions of
(A + BA) and («B + BB) solid solution exist.

We have already seen that there are analogies between melting behaviour and
phase transition behaviour in solid solution systems (Fig. 11.18a). A further
analogy exists between the eutectic, E. and the eutectoid, B, in Fig. 11.19. The line
A-B-C represents an invariant condition over which three phases coexist, fA s.s
(composition A), BB s.s.(composition B) and oB s.s.(composition C). The eutectic
reaction at E on cooling is 1 liquid — 2 solids (BA ss. + B s.s). The eutectoid
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reactionat Bon cooling is | solid (B s.s.) —» 2solids(fA ss. + aBs.s.). Thus, both
the eutectic and eutectoid reactions are disproportionation reactions.

Point Y is a peritectoid. The line X~ Y~Z represents an invariant condition over
which three phases coexist, @A s.s. (composition Y), fA s.s. (composition X) and
B s.5.(composition Z). On heating, the reaction 1 solid (xA s.s.) = 2 solids (BAss.

+ oB s.5.) occurs. This is analogous to the melting of an incongruent compound
at a peritectic temperature (Fig. 11.7b), which involves the reaction 1 solid — |
solid + 1 liquid.

A eutectoid reaction in the system Fe—C is of great importance to steel making.
The iron-rich part of this phase diagram is shown in Fig. 11.20. The diagram s, in
fact, a melastable phase diagram because the iron carbide phase, cementite,
Fe,C,isnot an equilibrium phase and should, thermodynamically, decompose to
a mixture of iron and graphite. However, kinetically, decomposition of cementite
is slow and is not observed under normal conditions of steel making. The changes
that occur on thermal cycling of Fe—C alloys can therefore be studied with the aid
of Fig. 11.20.

Iron exists in three polymorphic forms: body centred cubic a, stable below
910°C: face centred cubic ¥, stable between 910 and 1400 °C; and body centred

‘cubic(again!) é, stable between 1400 °C and the melting point 1 534 °C. y-Iron can

dissolve appreciable amounts of carbon, up to 206 wt?%, in solid solution
formation, whereas the o and § forms dissolve very much less carbon, up to a
‘maximum of 0.02 and 0.1 wt%,, respectively.

There is a simple explanation for the very different solubilities of carbon in the
v and o polymorphs of iron. Although the face centred cubic y structure is more
densely packed than the body centred cubic a structure, the interstitial holes
(suitable for occupation by carbon) are larger although much less numerous in y-
Fe. Unit cells of the two forms are shown in Fig. 11.2] together with the
octahedral sites that are available for occupation by carbon. These sites are at the
cube face centres in a-Fe and at the body centre in y-Fe. The iron—carbon
distances and, hence, the sizes of the interstitial sites are considerably larger in y-
Fe than in a-Fe. In o-Fe, these sites are distorted. The cubic unit cell edge in a-Fe
is 2.866 A. Two iron—carbon distances would be 1433 A. The other four iron-
carbon distances would be 2.03 A. In y-Fe, the octahedral sites are undistorted
and the iron—carbon distance would be half the cell edge, a = 3.591 A. Therefore,
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Fig. 11.21 Interstitial sites for carbon in a-Fe and y-Fe
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Fe-C=1.796 A. (Values are for y-Fe at 22°C; values at, for example, 900 “C
would be a few per cent greater.)

Most carbon steels contain less than | wt %, carbon, viz. 0.2 to 0.3 per cent for
use as structural members. On cooling from the melt, and in the temperature
range 800 to 1400 °C, these steels form a solid solution of carbon in y-Fe called
austenite (Fig. 11.20). However, the austenite solid solutions are unstable at

lower temperatures ( < 723 °C) because, when the structure changes from that of

y-Fe to a-Fe, exsolution or precipitation of the carbide phase, Fe;C, occurs. This
decomposition starts at the boundaries of the austenite grains; the ferrite (a-Fe)
and cementite (Fe;C) crystals grow side by side to give a lamellar texture known
as pearlite.

If the steel is cooled quickly, however, there is not time for decomposition to
ferrite and cementite to occur; instead martensite forms. Martensite has a
deformed austenite structure in which the carbon atoms are retained in solid
solution. It is possible to release these carbon atoms, as cementite, by tempering,
i.e. reheating, to give a fine scale pearlite texture.

The hardness of steel depends very much on the cooling conditions and/or
tempering treatment. Martensitic steels are hard largely, it seems, because of the
stressed state of the martensite crystals which prevents easy motion of
dislocations. In steels with pearlite texture, the hardness depends on the size,
amount and distribution of the very hard cementite grains; - finer texture with a
large number of closely spaced grains gives harder steel. If the steel is cooled
slowly or held just below 723 °C, the decomposition is slow, giving a coarse
pearlite texture. A finer texture is obtained by using a faster cooling rate to
produce martensite which is then subsequently tempered at a low temperature,
e.g. 200°C.

11.4 Three-component condensed systems

Three-component or ternary systems have four independent variables:
pressure, temperature and the composition of two of the components. If the
composition or concentration of two of the components in a phase is fixed, the
third is automatically fixed by difference. In this chapter, for simplicity, we are not
considering volatile systems so we can use the condensed phase rule, i.e. P+ F
= C + | =4. Under these conditions the ternary system is, for example, invariant
when four phases—generally three crystalline phases and liquid —coexist at one
fixed temperature.

Ternary systems are nowadays usually represented by equilateral triangles and
the three components form the three corners of the triangle. Temperature is
represented by the vertical axis, perpendicular to the plane of the triangle. A
three-dimensional prism is needed to fully display the effects of varying
composition and temperature. In order to display ternary equilibria on paper it is
normal practice either to project the melting relations onto the composition
triangle, in much the same way that a geographical contour mapis a projection of
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Fig. 11.22 Triangular grid for representing compositions of three
component systems

features of the earth’s surface, or to construct isothermal sections. Examples of
both types of diagram are discussed.

Ternary compositions within equilateral triangles are given by reference to a
grid (Fig. 11.22). Each of the three binary edges is divided into a hundred
divisions (only ten are shown for clarity). Point A corresponds to 1009, A; the
edge BC corresponds to 0% A and the line XY to 109 A. Thus, the A content of
any ternary composition is given by drawing a line through that composition and
parallel to the BC edge. The A content is then read off from the intersection of this
line with either the AB or AC edges. The contents of B and C are given similarly
by drawing lines parallel to the AC and AB edges, respectively. Point P in
Fig. 11.22 has a composition of 309, A, 45%, B and 257, C. Compositions can be
either in atom per cent, in mole per cent or in weight per cent (but obviously not
a mixture). In practice, it is usually preferrable to use mole per cent for inorganic
systems because the formulae of binary and ternary phases are then clearly
and simply related to the composition.

An alternative method of determining composition is, by making appropriate
construction lines, to read off the concentration of all three components from one
of the edges. For composition P (Fig. 11.22), lines PO and PQ are drawn, parallel
to AC and AB, respectively. The length CO represents the percentage of B (45),
the length QB represents the percentage C (25) and the difference, length OQ, the
percentage A (30). Thus, the middle section (OQ) represents the concentration of
the phase or component that is not located on the line.
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This method is very useful since it can be applied to determining phase
compositions in triangles that are not equilateral. In most ternary systems which
have binary and ternary phases present, as well as liquid, the triangles that
represent the equilibria involved are not equilateral. An example is shown as an
inset to Fig. 11.22 for point F, which is a mixture of three phases of composition
A,D and E. Lines GF and HF are drawn parallel to DE and AE, respectively. The
percentages of A, D and E present in F are calculated from the relative lengths of
DG, AH and GH, respectively.

11.4.1 Simple eutectic system without binary of ternary compounds

A simple eutectic system is shown in Fig. 11.23 in which the liquidus relations
are projected onto the composition plane. Each of the three binary edges, AB, AC
and BC, is simple eutectic in character, as shown for the AB edge. The binary
edges have eutectic temperatures T,, T, and T, respectively. For each phase,
the liquidus surface of the primary phase field in the ternary system is a curved
surface that forms part of a dome. For a congruently melting phase such as
B, the apex of the dome corresponds with the composition and melting point
of B. Isotherms 71,...,T5 on the surface of the liquidus describe the shape of
the dome. The primary phase field of B is bounded by B, T,, Ty and T..

Neighbouring primary phase fields, e.g. of A and B, intersect in a sloping
boundary line or valley, in this case T,—T,;. When three neighbouring primary
phase fields meet, as at Ty, the point of intersection is a ternary invariant point. As
Tq4is the lowest temperature at which liquid can exist in this triangle it is a ternary
eutectic (at Ty, P =4: A, B, C and liquid; and so F = 0). The line T,- T}, as well as

Fig. 11.23 Simple ternary eutectic system showing uni-
variant curves and liquidus isotherms
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the lines Ty~ T, and T,.- Ty, is a univariant curve (P = 3:A, B and liquid; and so IR
= 1). One degree of freedom, either temperature or composition of the liquid, is
needed to define the phases that are in equilibrium on this univariant curve.
Arrows on the univariant curves indicate directions of falling temperature. It
should be clear that an invariant point in a binary system, such as the eutectic
at y, becomes a univariant curve in the ternary system when a third component
is added.

The equilibrium assemblage present in ternary compositions at any tempera-
ture between the solidus and liquidus can best be understood from a knowledge
of the crystallization pathways followed on cooling. Consider the changes that
are expected to occur in composition a (Fig. 11.24) as it is cooled from the liquid
state. Composition a lies within the primary phase field of B. Hence B is the first
crystalline phase to appear on cooling, once the temperature has fallen inside the
liquidus dome. As B progressively crystallizes, the liquid becomes deficient in B
and it should be apparent that composition B and the locus of the changing liquid
composition must lie on a straight line that passes through the bulk composition
a. Thus, with falling temperature, the liquid composition moves away from B, on
an extension of the line Ba and towards b. For temperatures in this range, such
that the liquid composition is between a and b, the relative amounts of B and
liquid are given by a simple lever rule calculation. For instance, when the liquid
has almost reached b, the fraction of liquid present is given approximately by
aB/bB.

Once the temperature has fallen sufficiently that the liquid composition has
reached b, crystals of A begin to form. With a further drop in temperature the
liquid composition is constrained to move down the univariant boundary curve
bed and the equilibrium assemblage over this temperature range is (A+B
+ liquid). The relative quantities of the three phases can be found from a lever
rule construction similar to that shown in the inset in Fig. 11.22. For example,
with liquid of composition ¢, the bulk composition a lies in the triangle withA, B
and c as corners; lines passing through a and parallel to the Bc and Ac edges may

A

B c

Fig. 11.24 Crystallization pathway
in a simple ternary eutectic system
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be drawn (not shown) and the phase composition determined from the intercepts
of these lines on the AB edge.

In addition to the precipitation of A crystals that occurs as the liquid
composition moves from b to d, precipitation of B crystals also continues. This
can be checked by making lever rule calculations for different liquid com-
positions between b and d. Alternatively, it can be seen that if crystals of A
precipitate from liquid, say of composition ¢, then crystals of B must also
precipitate in order to maintain the liquid composition on the line cd.

Point d is a ternary eutectic. Its temperature, Ty, is the lowest at which
liquid can exist in equilibrium in this system. When this temperature is reached
on cooling and the liquid composition has arrived at d, the residual liquid
must crystallize to give a mixture of A, B and C. Crystals of C are therefore
forming for the first time. The final amounts of A, B and C in equilibrium
are determined by lever rule calculations in the triangle A, B, C.

The behaviour of other compositions on cooling can be treated similarly and a
sequence of reactions is generally observed. Differences occur only for com-
positions that happen to coincide with either univariant curves, e.g. ¢, or
invariant points, e.g. d. Thus liquid of composition d must change completely
from 100 per cent liquid to a solid mixture of A, B and C at one temperature. The
behaviour of solid mixtures on heating is simply the reverse of the crystallization
pathway followed on cooling and is not described further.

11.4.2 Ternary systems containing binary compounds

Ternary systems that contain one congruently melting binary compound, but
no ternary compounds or solid solutions, can be one of the two types shown in
Fig. 11.25. In (a), the triangle ABC can be divided into two smaller triangles, A-
B-BC and A-BC—C. Both of these are simple eutectic in character, similar to
Figs 11.23 and 11.24. Each triangle can be treated separately and no new
principles are involved. The only feature that is worthy of comment is the join
A-BC.

The join A-BC is a true binary join because any composition on this join,

A

(a)

B BC c B BC c

Fig. 11.25 Possible melting relations in ternary systems that
contain a congruently melting binary phase
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whether solid, liquid or a mixture of solid and liquid, can be represented
completely by positive quantities of A and BC alone. The join is simple eutectic in
character with a eutectic temperature, T;. However, whereas T, is the lowest
temperature at which liquid can exist on the join A-BC, T, is in fact a thermal
maximum on the univariant boundary curve which separates the primary phase
fields of A and BC in the ternary A-B-C system, ie. T, > E,, E,. Drawing an
analogy with geographical contour maps, T, represents the height of a pass
between the two mountains A and BC.

In Fig. 11.25(b), compound BC again melts congruently but the ternary
melting behaviour is different for certain compositions. The univariant curves
that separate the primary phase fields of (i) A and B and (i1) B and BC now cross
the join A-BC, whereas this does not happen in Fig. 11.25(a). As a result, the
invariant point located at the intersection of these two univariant curves lies
outside the triangle A-B—BC. Every triangle, such as A-B—BC has an associated
invariant point. The three crystalline phases that coexist at this point are the
three phases at the corners of the associated triangle. If an invariant point lies
outside its own triangle, automatically it is a ternary peritectic point. If it lies
inside its own triangle, it must be a ternary eutectic point. The direction of falling
temperaturc along the univariant curve that separates the fields of A and BC
must be in the direction arrowed since the peritectic temperature P must be
higher than the eutectic temperature E.

The join A-BC is not a binary join, as it is in the previous example, because
over a range of compositions, B is the primary phase and the composition B does
not lie on the join A—BC. The join A-BC is shown in Fig. | 1.26. It is much more
complicated than a simple eutectic system, such as the join A-BC in Fig. 11.25(a).
Consider the crystallization of the liquid of composition a on cooling
(Figs. 11.25b and 11.26). This composition is within the primary phase field of A
and so A is the first crystalline phase to appear. As the temperature drops, A
continues to precipitate until temperature T} is reached, by which time the liquid
composition has arrived at point b. At b, crystals of B begin to form and the liquid
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Fig. 11.26 The join A-BC in Fig. 11.25(b)
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composition departs from the line A-BC because it is constrained to follow the
univariant. curve b—P that separates the ficlds of A and B. In Fig. 11.26 the
composition has entered the region, A + B + liquid, although neither B nor the
liquid composition (represented by the line bc) lie on the join A-BC. As the
temperature drops further, A and B continue to crystallize until the peritectic
temperature P is reached. At P, all of B and all of the liquid react (this may be
kinetically slow) to give more crystals of A and, for the first time, crystals of BC.
Below P no further changes occur as the equilibrium subsolidus assemblage A
+ BC is now present. Thus, the final subsolidus assemblage has returned to the
join A-BC although for most of the crystallization process the compositions of
some of the phases present do not lie on the join A-BC.

For all compositions that lie within the triangle A-B-BC (Fig. 11.25b), the
processes of crystallization that occur on cooling from the liquid state terminate
at temperature P: i.e. Pis the solidus temperature for the triangle A-B-BC. For
compositions that lie within the triangle A-BC-C, the solidus temperature is the
eutectic temperature E.

Two other types of ternary system that contain only one binary compound are
shown in Fig. 11.27. The compound BC melts incongruently in Fig. 11.27(a) and
the BC edge has a phase diagram that is similar to that shown in Fig. 11.7(b). The
ternary diagram A-B-C (Fig. 11.27a) contains one peritectic and one eutectic
and is similar to that described above (Fig. 11.25b).

In Fig. 11.27(b), the binary compound BC has an upper temperature limit of
stability. The phase diagram of the B-C edge is similar to that shown in
Fig. 11.7(c). Above temperature T}, BC decomposes to give a solid mixture of B
and C; only at the considerably higher solidus temperature, T,, does melting
begin to occur. The binary eutectic point, T,, on the BC edge becomes a
univariant curve in the ternary system. This curve separates the primary phase
fields of B and C and its temperature falls with increasing A content. When the
temperature falls to below T, B and C are no longer stable together but react to
give BC. This is true in both binary B—C and ternary A—B—C compositions. As a
consequence, a ternary primary phase field for phase BC appears at temperatures
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Fig. 11.27 Ternary systems containing (a) an incon-
gruently melting binary phase and (b) a binary phase with
an upper limit of stability
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below T,. Three ternary invariant points are shown in Fig. 11.27(b); two of these
are eutectics, E, and E,, and belong to the triangles A-BC-C and A-B-BC,
respectively. The third invariant point at temperature T, corresponds to the
decomposition of compound BC and at this point the primary phase fields of B, C
and BC meet. This invariant point is neither a eulectic nor a peritectic; itdoes not
belong to either of the two triangles but to the straight line B-BC—C. Sometimes,
such a point is called a distribution point.

Some of the crystallization pathways for compositions within the triangles in
Fig. 11.27(b) are quite complicated and involve several stages. For example, on
cooling of a liquid of composition a, the crystallization pathway under
equilibrium conditions can be summarized in the following scheme of reactions:

T Ey

Liquid a— C + liquid = C 4 B + liquid - C + BC + liquid - C + BC + A
As always, the crystallization process ends when the invariant point is reached
that belongs to the final, desired subsolidus assemblage, which in this case is A
+ BC + C. One feature of this sequence that is worth discussing is the reaction
that occurs at temperature T . Given that once a liquid composition has arrived
at a univariant curve it continues moving down that curve, or another similar
univariant curve, with falling temperature (there are exceptions to this, see
below), then a liquid arriving at the invariant point and temperature 7, has
apparently a choice of univariant curves to follow. It would appear to be able to
go either in the direction of eutectic E, or in the direction of eutectic E,. However,
if the liquid composition followed the univariant curve leading to eutectic E, an
impossible situation would arise. Clearly the bulk composition a must be
represented by positive amounts of the three phases that are in equilibrium at a
particular temperature. Suppose the temperature was just below T, but above
those of E, and E,. If the liquid had decided to follow the curve in the direction of
E,, then the three phases present in equilibrium would be B, BC and liquid. The
compositions of these three phases, B, BC and liquid, form a triangle (dotted) and,
quite clearly, a lies outside this triangle. This therefore is an impossible situation.
The alternative is for the liquid to follow the curve T,-E,, in which case the three
phases present are BC, C and liquid. Bulk composition a does lie within this
triangle (dashed).

Although liquid compositions follow a univariant curve on cooling, if at all
possible, sometimes this is not possible. Consider liquid of bulk composition b in
Fig. 11.27(b). On cooling, primary phase crystals of C appear first. On further
cooling, a three-phase equilibrium arises when the liquid compasition meets the
curve T,—-E,: the phases in equilibrium are BC, C and liquid. This situation
continues on further cooling until the liquid composition reaches point c. At this
stage, composition b lies on the straight line that connects the compositions of
crystals BC and liquid c¢. Therefore, the amount of crystals C that are present in
equilibrium must have decreased to zero. Further movement of the liquid
composition towards E, is now prohibited because b would lie outside the triangle

~ BC—C-liquid. Instead the liquid composition must depart from the univariant

curve T, E, and enter the primary phase field of BC.
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This effect may be explained with the aid of the phase rule. A liquid is
constrained to follow a univariant curve when the reaction mixture is in a
condition of univariant equilibrium, i.e. it has only one degree of freedom. This
occurs when the liquid composition lies somewhere between T and ¢. When,
however, the liquid composition reaches c, one of the phases, crystalline C,
disappears; consequently an extra degree of freedom is created, in accordance
with the phase rule. The liquid is therefore no longer constrained to follow the
univariant curve.

As the liquid leaves the univariant curve at point ¢, it enters the primary phase
field of BC, i.e. the assemblage present is BC + liquid. As the temperature drops,
BC continues to precipitate until the liquid reaches point d. Here, the residual
liquid crystallizes to give a mixture of A and BC, which is the subsolidus
assemblage for composition b. The equilibrium pathway followed by com-
position b on cooling may therefore be summarized:

Liquid — C + liquid = C + BC + liquid = BC + liquid = BC + A

The stage has now been reached where the basic principles of ternary melting
behaviour have been set out and illustrated with simple examples. If several
binary compounds or one¢ or more ternary compounds are present, the diagrams
may be very complicated, but, even so, no new principles are necessary in order to
understand the diagrams. It does not seem worth while to try and discuss more
complicated systems here;instead it is recommended that the keen reader choose
a system and try to work out crystallization pathways for various liquid
compositions. In this way, one can begin to find out about a system in much the
same manner that a hill-walker can become acquainted with the hills and valleys
of a new region by studying an ordinance survey map.

11.4.3 Subsolidus equilibria

The behaviour of systems at subsolidus temperatures is very important,
especially in more complicated systems. A system that contains several binary or
ternary phases is, at subsolidus temperatures, divided up into a number of smaller
triangles. On paper, there is usually more than one possible set of triangles and
one of the experimental problems in studying ternary equilibria is to determine
the equilibrium arrangement of triangles. The problem s illustrated in Fig. 11.28.
Two binary compounds AC and BC are present. The subsolidus triangle AC-
BC-C must exist as there are no alternative triangles in this part of the diagram.
For the rest of the diagram, however, there is a choice between having either A
and BC as compatible phases or B and AC. If we assume that A and BC are
compatible, a line is drawn between them that indicates their stability in the
presence of each other. Two three-phase triangles result, A-B-BC and A-BC-
AC. This means that B and AC would be incompatible phases; mixtures of B and
AC should therefore react to give a mixture of A and BC, although the reaction
rate may be slow.

The compatibility or incompatibility of phase mixtures or assemblages is of
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Fig. 11.28 Compatibility triangles
in a ternary system at subsolidus
temperatures

great practical importance in, for example, cement and refractories. In the
manufacture of Portland cement clinker, the desired calcium silicates are
Ca,Si0, and Ca;SiOs; undesired ones are Ca;Si, O, and CaSiOj;. Additives
must clearly be avoided which would react with either Ca;SiO5 or Ca,SiO,4 to
produce one of the other calcium silicates. Alternatively, using Fig. 11.28 as an
example, if AC is the phase with the desirable properties, it is important to
exclude B from the system because B and AC are incompatible. Similar
considerations affect the lifetime of refractory bricks, i.c. molten slag and the
refractory brick should be compatible.

11.4.4 Temary systems containing binary solid solutions

Ternary phase equilibria may be quite complicated if solid solutions are
present. A full treatment of such systems is not attempted here; instead only some
of the more important points in simple systems are highlighted. Subsolidus
equilibria for some simple systems are shown in Fig. 11.29. In (a}, a complete
range of solid solutions between B and C is shown by the hatching of the B~C
join. These solid solutions coexist with A but there are never more than two

Fig. 11.29 Ternary systems containing ranges of binary
solid solution. Numbers refer to the numbers of phases in
equilibrium in each region
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phases present in subsolidus equilibrium for any composition. Tie-lines radiate
from A towards the BC edge; the whole ternary system can therefore be divided
into an infinite number of closely spaced tie-lines, each of which represents a
different two-phase assemblage.

Partial solid solution between a binary phase AB, and a non-existent
compound AC, is shown in Fig. 11.29(b) and (c); the formula of this solid
solution may be written AB,_,C,. These solid solutions must coexist with A,
forming a two-phase region, as there is no other possible arrangement for
compositions in this part of the triangle. Similarly, the three-phase triangle
(A +C +solid solutions of composition n) must exist. For the remaining com-
positions which involve the coexistence of B, C and AB, solid solutions, however,
there is more. than one possible compatibility arrangement; two of these
possibilities are shown in Fig. 11.29(b) and (c). The AB, solid solutions may
coexist almost entirely with B (Fig. 11.29¢) or almost entirely with C(not shown)
or partly with B and partly with C (Fig. 11.29b). The correct, equilibrium,
arrangement must be determined experimentally.

The presence of solid solutions in a phase diagram complicates melting
behaviour. For the subsolidus diagram shown in Fig. 11.2%(a), melting relations
are typically as shown in Fig. 11.30. The edges AB and AC are simple eutectic in
character: the BC edge (Fig. 11.30b) is similar to Fig. 11.11 and has a smoothly
changing solidus and liquidus without thermal maxima, minima or invariant
points. In the ternary system (Fig. 11.30a), there are no invariant points and only
one univariant curve. This separates the primary phase fields of A and BC solid
solutions; on this curve, temperatures fall in the direction XY. Liquid on the
univariant curve XY coexists with both A and BC solid solutions; each liquid
composition coexists with a particular BC solid solution composition. Tie-lines
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Fig. 11.30 Solid-liquid compatibility relations in ternary
systems with binary solid solution
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Fig. 11.31 Crystallization pathway in ternary
system with binary solid solutions

that connect A and liquid on the curve XY radiate from A; however, tie-lines
between BC solid solutions and the same liquids XY do not radiate from either B
or C but move smoothly across the diagram. For example, liquid of composition
y coexists with A and BC solid solution of composition x.

Consider the cooling of liquid of composition a (Fig. 11.31). The equilibrium
subsolidus assemblage is A and solid solution p. On cooling, A starts to
precipitate from the liquid and the liquid composition moves away from a on the
extension of the line Aa. When the liquid composition reaches r on the univariant
curve, BC solid solution crystals start to form; these have composition m. With
further cooling, the liquid composition follows the curve XY in the direction rst.
As it does so, the composition of the BC solid solution must change continuously
at equilibrium and the amount of crystalline material, both A and BC solid

~ solutions, increases. For liquid s the composition of the equilibrium solid

solution is n. With further cooling, crystallization continues until the liquid
reaches ¢ and the solid solution composition reaches p. This is now the final
equilibrium subsolidus condition and so the last trace of liquid disappears at .

Unless cooling rates are very slow, a non-equilibrium assemblage is usually
produced, by a process of fractional crystallization. Thus, if the first solid solution
crystals to form, of composition m, do not re-equilibrate with the liquid on
lowering the temperature a little further, then they may effectively be lost from the
system. If this happens with all of the solid solution crystals that precipitate, a
wide range of cored solid solution compositions results, extending from m,
through p to some composition more rich in C. Hence, the crystals that form may
be inhomogeneous, having B-rich centres and C-rich surfaces. Examples of such
zoning or coring in metals and minerals were mentioned in the section on binary
systems.

Crystallization of liquids within the primary phase field of BC solid solutionsis
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Fig. 11.32 Crystallization pathway in ternary
system with binary solid solutions

rather more complex (Fig. 11.32). Consider liquid b; the first BC solid solution
crystals to form have composition p. As the liquid moves down the liquidus
surface, precipitation of more C-rich solid solution occurs and also the previously
precipitated solid solution, p, re-equilibrates with the liquid to become more C-
rich. With falling temperature, the liquid composition follows a curved pathway
bede as the solid solution composition moves along pgrs. Thus, the liquid and
solid solution compositions rotate about the bulk composition, b. Each liquid
composition that lics on the tie-line se follows a unique pathway on cooling, but
all of these pathways meet at the common point e on the univariant curve XY. At
point e, crystals of A start to form and the liquid composition is constrained to
follow the curve XY until point f is reached, at which the last of the liquid
disappears. The subsolidus assemblage is A + solid solution ¢.

An apparently simple ternary diagram such as shown in Figs 11.30 to 11.32
requires a great deal of experimental work for its complete determination. Each
composition within the primary phase field of BC solid solutions has its own
particular crystallization pathway (e.g. bede for composition b; see Fig. 11.32)
and these pathways have to be determined experimentally. Few systems have
therefore been completely evaluated.

Questions

11.1  What is (i) the mole per cent and (ii) the weight per cent of (a) Al,O; in
mullite, AlgSi,O,; (b) Na,O in devitrite, Na,Ca,Si;O,, (c) Y,O; in
yttrium iron garnet, Y,Fe O,,?

11.2  Sketch the phase diagram for the system Al,0;—SiO, using the following
information. Al,O; and SiO, melt at 2060 and 1720 °C. One congruently
melting compound, AlgSi,O,;, forms between Al,0O, and SiO, with a
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melting point of 1850 °C. Eutectics occur at ~ 5mol%;, Al,05, 1595°C and
~ 67mol%, Al,0;, 1840 °C. Compare your diagram with that shown in
Fig. 20.3(a).

11.3 Explain with the aid of examples the difference between the concepts of

' phases and components. Under what conditions can a component be a
phase?

114 Phase diagrams are drawn with the compositions represented usually as
either weight per cent or mole per cent. Derive expressions for a binary
AB system for converting from one to the other.

11.5 Sketch a phase diagram for a system A—B that has the following features.
Three binary compounds are present A,B, AB and AB,. Both A,B and
AB, melt congruently. AB melts incongruently to give A,B and liquid. AB
also has a lower limit of stability.

11.6 For the MgAl,04—Al,0; phase diagram (Fig. 10.3) describe the reactions
that would be expected to occur, under equilibrium conditions, on cooling
a liquid of composition 40 mol%, MgQO, 60% Al,O;. Using rapid cooling
rates, how might the product(s) differ?

1.7 The system Mg,Si0,-Zn,Si0, is a simple eutectic system in which the
two end-member phases form limited ranges of solid solution. Sketch a
probable phase diagram for this system. How would you determine
experimentally: (i) the compositions of the solid solution limits; (ii) the
mechanism of solid solution formation in each case; (iii) the eutectic

- temperature.

11.8 Pure iron undergoes the a=y transformation at 910°C. The effect of
added carbun is to reduce the transformation temperature from 910 to
723 °C. Sketch the general appearance of the Fe-rich end of the Fe-C
phase diagram using this information.

119 Construct a triangular grid for representing three-component phase
diagrams. Let the three components be Na,O, CaO and SiO,. Mark on
your triangle, using a moleY, scale, the compositions of the
following phases: Na,SiO;, Na,Si,0,, CaSiO,, Ca,Si,0,, Ca,SiO,,
Ca,SiO,, Na,CaSiO,, Na,Ca,SiO,,, Na,Ca,Si,O,, Na,CaSi,;O,,
Na,CaSi;0,,.

11.10 The ternary system A—B—C contains no binary compounds and only one
ternary compound, X. (i) Sketch the layout of the subsolidus compatibility
triangles. (i) Assuming that X melts congruently, sketch the melting
relations. Identify three ternary eutectics, three thermal maxima and six
univariant curves.
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Phase transitions are important in most areas of solid state science. They are
interesting academically, e.g. a considerable slice of current research in solid state
physics concerns soft mode theory, which is one aspect of phase transitions, and
they are important technologically, ¢.g. in the synthesis of diamond from
graphite, the processes for strengthening of steel and the properties of fer-
roelectricity and ferromagnetism. This chapter discusses structural, thermody-
namic and kinetic aspects of phase transitions and their classification. A few of
the more important phase transitions are described; others are mentioned
elsewhere in this book.

12.1 What is a phase transition?

If a crystalline material is capable of existing in two or more polymorphic
forms (e.g. diamond and graphite), the process of transformation from one
polymorph to another is a phase transition. The terms transition and transfor-
mation are both used to describe this and are interchangeable. In the narrowest
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